Tracking an object using the Kalman filter#

Consider an object moving in \(R^2\). We assume that we observe a noisy version of its location at each time step. We want to track the object and possibly forecast its future motion. We now show how to do this using a simple linear Gaussian SSM, combined with the Kalman filter algorithm.

Let the hidden state represent the position and velocity of the object, \(z_t =\begin{pmatrix} u_t & v_t & \dot{u}_t & \dot{v}_t \end{pmatrix}\). (We use \(u\) and \(v\) for the two coordinates, to avoid confusion with the state and observation variables.) The process evolves in continuous time, but if we discretize it with step size \(\Delta\), we can write the dynamics as the following linear system:

\[\begin{align*} \underbrace{\begin{pmatrix} u_t\\ v_t \\ \dot{u}_t \\ \dot{v}_t \end{pmatrix}}_{z_t} = \underbrace{ \begin{pmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} }_{F} \underbrace{\begin{pmatrix} u_{t-1} \\ v_{t-1} \\ \dot{u}_{t-1} \\ \dot{v}_{t-1} \end{pmatrix}}_{z_{t-1}} + q_t \end{align*}\]

where \(q_t \in R^4\) is the process noise, which we assume is Gaussian, so \(q_t \sim N(0,Q)\).

Now suppose that at each discrete time point we observe the location (but not the velocity). We assume the observation is corrupted by Gaussian noise. Thus the observation model becomes

\[\begin{align*} \underbrace{\begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}}_{y_t} &= \underbrace{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} }_{H} \; \underbrace{\begin{pmatrix} u_t\\ v_t \\ \dot{u}_t \\ \dot{v}_t \end{pmatrix}}_{z_t} + r_t \end{align*}\]

where \(r_t \sim N(0,R)\) is the observation noise. We see that the observation matrix \(H\) simply ``extracts’’ the relevant parts of the state vector.

Setup#

Hide code cell content
%%capture
try:
    import dynamax
except ModuleNotFoundError:
    print('installing dynamax')
    %pip install -q dynamax[notebooks]
    import dynamax
from jax import numpy as jnp
from jax import random as jr
from jax import vmap
from matplotlib import pyplot as plt

from dynamax.utils.plotting import plot_uncertainty_ellipses
from dynamax.linear_gaussian_ssm import LinearGaussianSSM
from dynamax.linear_gaussian_ssm import lgssm_smoother, lgssm_filter

Create the model#

state_dim = 4
emission_dim = 2
delta = 1.0

# Create object
lgssm = LinearGaussianSSM(state_dim, emission_dim)

# Manually chosen parameters
initial_mean = jnp.array([8.0, 10.0, 1.0, 0.0])
initial_covariance = jnp.eye(state_dim) * 0.1
dynamics_weights  = jnp.array([[1, 0, delta, 0],
                               [0, 1, 0, delta],
                               [0, 0, 1, 0],
                               [0, 0, 0, 1]])
dynamics_covariance = jnp.eye(state_dim) * 0.001
emission_weights = jnp.array([[1.0, 0, 0, 0],
                              [0, 1.0, 0, 0]])
emission_covariance = jnp.eye(emission_dim) * 1.0

# Initialize model
params, _ = lgssm.initialize(jr.PRNGKey(0),
                             initial_mean=initial_mean,
                             initial_covariance=initial_covariance,
                             dynamics_weights=dynamics_weights,
                             dynamics_covariance=dynamics_covariance,
                             emission_weights=emission_weights,
                             emission_covariance=emission_covariance)

Sample some data from the model#

num_timesteps = 15
key = jr.PRNGKey(310)
x, y = lgssm.sample(params, key, num_timesteps)

# Plot Data
observation_marker_kwargs = {"marker": "o", "markerfacecolor": "none", "markeredgewidth": 2, "markersize": 8}
fig1, ax1 = plt.subplots()
ax1.plot(*x[:, :2].T, marker="s", color="C0", label="true state")
ax1.plot(*y.T, ls="", **observation_marker_kwargs, color="tab:green", label="emissions")
ax1.legend(loc="upper left")
<matplotlib.legend.Legend at 0x7ff5c2c56ee0>
../../_images/262052328eac31915797aa5ee9cbdd23151b58e2ebfb88f4830e3f7417ac5b69.png
Hide code cell source
def plot_lgssm_posterior(post_means, post_covs, ax=None, ellipse_kwargs={}, legend_kwargs={}, **kwargs):
    """Plot posterior means and covariances for the first two dimensions of
     the latent state of a LGSSM.

    Args:
        post_means: array(T, D).
        post_covs: array(T, D, D).
        ax: matplotlib axis.
        ellipse_kwargs: keyword arguments passed to matplotlib.patches.Ellipse().
        **kwargs: passed to ax.plot().
    """
    if ax is None:
        fig, ax = plt.subplots()

    # This is to stop some weird behaviour where running the function multiple
    # #  times with an empty argument wouldn't reset the dictionary.
    # if ellipse_kwargs is None:
    #     ellipse_kwargs = dict()

    # if 'edgecolor' not in ellipse_kwargs:
    #     if 'color' in kwargs:
    #         ellipse_kwargs['edgecolor'] = kwargs['color']

    # Select the first two dimensions of the latent space.
    post_means = post_means[:, :2]
    post_covs = post_covs[:, :2, :2]

    # Plot the mean trajectory
    ax.plot(post_means[:, 0], post_means[:, 1], **kwargs)
    # Plot covariance at each time point.
    plot_uncertainty_ellipses(post_means, post_covs, ax, **ellipse_kwargs)

    ax.axis("equal")

    if "label" in kwargs:
        ax.legend(**legend_kwargs)

    return ax

Perform online filtering#

lgssm_posterior = lgssm.filter(params, y)
print(lgssm_posterior.filtered_means.shape)
print(lgssm_posterior.filtered_covariances.shape)
print(lgssm_posterior.marginal_loglik)
(15, 4)
(15, 4, 4)
-44.895382
fig2, ax2 = plt.subplots()
ax2.plot(*y.T, ls="", **observation_marker_kwargs, color="tab:green", label="observed")
ax2.plot(*x[:, :2].T, ls="--", color="darkgrey", label="true state")
plot_lgssm_posterior(
    lgssm_posterior.filtered_means,
    lgssm_posterior.filtered_covariances,
    ax2,
    color="tab:red",
    label="filtered means",
    ellipse_kwargs={"edgecolor": "k", "linewidth": 0.5},
    legend_kwargs={"loc":"upper left"}
)
<Axes: >
../../_images/f09a085e0e747ee2539a41a064ce4844a00b803ae5bde18f08a322c8fb5084d8.png

Perform offline smoothing#

lgssm_posterior = lgssm.smoother(params, y)
fig3, ax3 = plt.subplots()
ax3.plot(*y.T, ls="", **observation_marker_kwargs, color="tab:green", label="observed")
ax3.plot(*x[:, :2].T, ls="--", color="darkgrey", label="true state")
plot_lgssm_posterior(
    lgssm_posterior.smoothed_means,
    lgssm_posterior.smoothed_covariances,
    ax3,
    color="tab:red",
    label="smoothed means",
    ellipse_kwargs={"edgecolor": "k", "linewidth": 0.5},
    legend_kwargs={"loc":"upper left"}
)
<Axes: >
../../_images/ec28d356f37166a98305740f1c5bf085a83afd9a44afbabac51829b8948384c5.png

Low-level interface to the underlying inference algorithms#

We can also call the inference code directly, without having to make an LG-SSM object. We just pass the model parameters directly to the function.

filtered_posterior = lgssm_filter(params, y) # Kalman filter
smoothed_posterior = lgssm_smoother(params, y) # Kalman filter + smoother
assert jnp.allclose(lgssm_posterior.filtered_means, filtered_posterior.filtered_means)
assert jnp.allclose(lgssm_posterior.filtered_means, smoothed_posterior.filtered_means)
assert jnp.allclose(lgssm_posterior.smoothed_means, smoothed_posterior.smoothed_means)

Tracking multiple objects in parallel#

# Generate 4 sample trajectories
num_timesteps = 15
num_samples = 4
key = jr.PRNGKey(310)
keys = jr.split(key, num_samples)
xs, ys = vmap(lambda key: lgssm.sample(params, key, num_timesteps))(keys)
# vmap the inference
lgssm_posteriors = vmap(lambda y: lgssm.smoother(params, y))(ys)
def plot_kf_parallel(xs, ys, lgssm_posteriors):
    num_samples = len(xs)
    dict_figures = {}

    # Plot Data
    fig, ax = plt.subplots()
    for n in range(num_samples):
        ax.plot(*xs[n, :, :2].T, ls="--", color=f"C{n}")
        ax.plot(*ys[n, ...].T, ".", color=f"C{n}", label=f"Trajectory {n+1}")
    ax.set_title("Data")
    ax.legend()
    dict_figures["missiles_latent"] = fig

    # Plot Filtering
    fig, ax = plt.subplots()
    for n in range(num_samples):
        ax.plot(*ys[n, ...].T, ".")
        filt_means = lgssm_posteriors.filtered_means[n, ...]
        filt_covs = lgssm_posteriors.filtered_covariances[n, ...]
        plot_lgssm_posterior(
            filt_means,
            filt_covs,
            ax,
            color=f"C{n}",
            ellipse_kwargs={"edgecolor": f"C{n}", "linewidth": 0.5},
            label=f"Trajectory {n+1}",
        )
    ax.legend(fontsize=10)
    ax.set_title("Filtered Posterior")
    dict_figures["missiles_filtered"] = fig

    # Plot Smoothing
    fig, ax = plt.subplots()
    for n in range(num_samples):
        ax.plot(*ys[n, ...].T, ".")
        filt_means = lgssm_posteriors.smoothed_means[n, ...]
        filt_covs = lgssm_posteriors.smoothed_covariances[n, ...]
        plot_lgssm_posterior(
            filt_means,
            filt_covs,
            ax,
            color=f"C{n}",
            ellipse_kwargs={"edgecolor": f"C{n}", "linewidth": 0.5},
            label=f"Trajectory {n+1}",
        )
    ax.legend(fontsize=10)
    ax.set_title("Smoothed Posterior")
    dict_figures["missiles_smoothed"] = fig

    return dict_figures
dict_figures = plot_kf_parallel(xs, ys, lgssm_posteriors)
../../_images/ba822946a1eb9ba070edce5cb06a539bb5ad9da747e6d75809d87523a4e53e83.png ../../_images/219d2fb789d08d94820099fc5e6be0dfd2567ba64ceb39edd1257e40e7093099.png ../../_images/26ec85d349c68eb6cb19be46b784271382523da73fa2190e66965a12ad8a00e7.png