Online linear regression using Kalman filtering

Online linear regression using Kalman filtering#

We perform sequential (recursive) Bayesian inference for the parameters of a linear regression model using the Kalman filter. (This algorithm is also known as recursive least squares.) To do this, we treat the parameters of the model as the unknown hidden states. We assume that these are constant over time. The graphical model is shown below.

RLS

The model has the following form

\[\begin{align*} \theta_t &= \theta_{t-1} \\ y_t &= x_t^T \theta_t + r_t, \; r_t \sim N(0, \sigma^2) \end{align*}\]

This is a LG-SSM, where \(F=I\), \(Q=0\), \(H_t = x_t^T\) and \(R = \sigma^2\).

Setup#

Hide code cell content
%%capture
try:
    import dynamax
except ModuleNotFoundError:
    print('installing dynamax')
    %pip install dynamax[notebooks]
    import dynamax
from jax import numpy as jnp
from matplotlib import pyplot as plt
from dynamax.linear_gaussian_ssm import LinearGaussianSSM

Data#

Data is from https://github.com/probml/pmtk3/blob/master/demos/linregOnlineDemoKalman.m

n_obs = 21
x = jnp.linspace(0, 20, n_obs)
X = jnp.column_stack((jnp.ones_like(x), x))  # Design matrix.
y = jnp.array(
    [2.486, -0.303, -4.053, -4.336, -6.174, -5.604, -3.507, -2.326, -4.638, -0.233, -1.986, 1.028, -2.264,
     -0.451, 1.167, 6.652, 4.145, 5.268, 6.34, 9.626, 14.784])

Model#

F = jnp.eye(2)
Q = jnp.zeros((2, 2))  # No parameter drift.
obs_var = 1.0
R = jnp.ones((1, 1)) * obs_var
mu0 = jnp.zeros(2)
Sigma0 = jnp.eye(2) * 10.0


# the input_dim = 0 since we encode the covariates into the non-stationary emission matrix
lgssm = LinearGaussianSSM(state_dim = 2, emission_dim = 1, input_dim = 0)
params, _ = lgssm.initialize(
    initial_mean=mu0,
    initial_covariance=Sigma0,
    dynamics_weights=F,
    dynamics_covariance=Q,
    emission_weights=X[:, None, :], # (t, 1, D) where D = num input features
    emission_covariance=R,
    )

Online inference#

lgssm_posterior = lgssm.filter(params, y[:, None]) # reshape y to be (T,1)
kf_results = (lgssm_posterior.filtered_means, lgssm_posterior.filtered_covariances)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[5], line 1
----> 1 lgssm_posterior = lgssm.filter(params, y[:, None]) # reshape y to be (T,1)
      2 kf_results = (lgssm_posterior.filtered_means, lgssm_posterior.filtered_covariances)

File ~/work/dynamax/dynamax/dynamax/linear_gaussian_ssm/models.py:226, in LinearGaussianSSM.filter(self, params, emissions, inputs)
    220 def filter(
    221     self,
    222     params: ParamsLGSSM,
    223     emissions: Float[Array, "ntime emission_dim"],
    224     inputs: Optional[Float[Array, "ntime input_dim"]] = None
    225 ) -> PosteriorGSSMFiltered:
--> 226     return lgssm_filter(params, emissions, inputs)

File ~/work/dynamax/dynamax/dynamax/linear_gaussian_ssm/inference.py:360, in preprocess_args.<locals>.wrapper(*args, **kwargs)
    357 num_timesteps = len(emissions)
    358 full_params, inputs = preprocess_params_and_inputs(params, num_timesteps, inputs)
--> 360 return f(full_params, emissions, inputs=inputs)

File ~/work/dynamax/dynamax/dynamax/linear_gaussian_ssm/inference.py:488, in lgssm_filter(params, emissions, inputs)
    486 # Run the Kalman filter
    487 carry = (0.0, params.initial.mean, params.initial.cov)
--> 488 (ll, _, _), (filtered_means, filtered_covs) = lax.scan(_step, carry, jnp.arange(num_timesteps))
    489 return PosteriorGSSMFiltered(marginal_loglik=ll, filtered_means=filtered_means, filtered_covariances=filtered_covs)

    [... skipping hidden 9 frame]

File ~/work/dynamax/dynamax/dynamax/linear_gaussian_ssm/inference.py:476, in lgssm_filter.<locals>._step(carry, t)
    473 y = emissions[t]
    475 # Update the log likelihood
--> 476 ll += _log_likelihood(pred_mean, pred_cov, H, D, d, R, u, y)
    478 # Condition on this emission
    479 filtered_mean, filtered_cov = _condition_on(pred_mean, pred_cov, H, D, d, R, u, y)

File ~/work/dynamax/dynamax/dynamax/linear_gaussian_ssm/inference.py:461, in lgssm_filter.<locals>._log_likelihood(pred_mean, pred_cov, H, D, d, R, u, y)
    459 if R.ndim==2:
    460     S = R + H @ pred_cov @ H.T
--> 461     return MVN(m, S).log_prob(y)
    462 else:
    463     L = H @ jnp.linalg.cholesky(pred_cov)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/decorator.py:232, in decorate.<locals>.fun(*args, **kw)
    230 if not kwsyntax:
    231     args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/distribution.py:342, in _DistributionMeta.__new__.<locals>.wrapped_init(***failed resolving arguments***)
    339 # Note: if we ever want to have things set in `self` before `__init__` is
    340 # called, here is the place to do it.
    341 self_._parameters = None
--> 342 default_init(self_, *args, **kwargs)
    343 # Note: if we ever want to override things set in `self` by subclass
    344 # `__init__`, here is the place to do it.
    345 if self_._parameters is None:
    346   # We prefer subclasses will set `parameters = dict(locals())` because
    347   # this has nearly zero overhead. However, failing to do this, we will
    348   # resolve the input arguments dynamically and only when needed.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/mvn_full_covariance.py:191, in MultivariateNormalFullCovariance.__init__(self, loc, covariance_matrix, validate_args, allow_nan_stats, name)
    185       # No need to validate that covariance_matrix is non-singular.
    186       # LinearOperatorLowerTriangular has an assert_non_singular method that
    187       # is called by the Bijector.
    188       # However, cholesky() ignores the upper triangular part, so we do need
    189       # to separately assert symmetric.
    190       scale_tril = tf.linalg.cholesky(covariance_matrix)
--> 191     super(MultivariateNormalFullCovariance, self).__init__(
    192         loc=loc,
    193         scale_tril=scale_tril,
    194         validate_args=validate_args,
    195         allow_nan_stats=allow_nan_stats,
    196         name=name)
    197 self._parameters = parameters

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/decorator.py:232, in decorate.<locals>.fun(*args, **kw)
    230 if not kwsyntax:
    231     args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/distribution.py:342, in _DistributionMeta.__new__.<locals>.wrapped_init(***failed resolving arguments***)
    339 # Note: if we ever want to have things set in `self` before `__init__` is
    340 # called, here is the place to do it.
    341 self_._parameters = None
--> 342 default_init(self_, *args, **kwargs)
    343 # Note: if we ever want to override things set in `self` by subclass
    344 # `__init__`, here is the place to do it.
    345 if self_._parameters is None:
    346   # We prefer subclasses will set `parameters = dict(locals())` because
    347   # this has nearly zero overhead. However, failing to do this, we will
    348   # resolve the input arguments dynamically and only when needed.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/mvn_tril.py:228, in MultivariateNormalTriL.__init__(self, loc, scale_tril, validate_args, allow_nan_stats, experimental_use_kahan_sum, name)
    221   linop_cls = (KahanLogDetLinOpTriL if experimental_use_kahan_sum else
    222                tf.linalg.LinearOperatorLowerTriangular)
    223   scale = linop_cls(
    224       scale_tril,
    225       is_non_singular=True,
    226       is_self_adjoint=False,
    227       is_positive_definite=False)
--> 228 super(MultivariateNormalTriL, self).__init__(
    229     loc=loc,
    230     scale=scale,
    231     validate_args=validate_args,
    232     allow_nan_stats=allow_nan_stats,
    233     experimental_use_kahan_sum=experimental_use_kahan_sum,
    234     name=name)
    235 self._parameters = parameters

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/decorator.py:232, in decorate.<locals>.fun(*args, **kw)
    230 if not kwsyntax:
    231     args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/distribution.py:342, in _DistributionMeta.__new__.<locals>.wrapped_init(***failed resolving arguments***)
    339 # Note: if we ever want to have things set in `self` before `__init__` is
    340 # called, here is the place to do it.
    341 self_._parameters = None
--> 342 default_init(self_, *args, **kwargs)
    343 # Note: if we ever want to override things set in `self` by subclass
    344 # `__init__`, here is the place to do it.
    345 if self_._parameters is None:
    346   # We prefer subclasses will set `parameters = dict(locals())` because
    347   # this has nearly zero overhead. However, failing to do this, we will
    348   # resolve the input arguments dynamically and only when needed.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/mvn_linear_operator.py:205, in MultivariateNormalLinearOperator.__init__(self, loc, scale, validate_args, allow_nan_stats, experimental_use_kahan_sum, name)
    202 if loc is not None:
    203   bijector = shift_bijector.Shift(
    204       shift=loc, validate_args=validate_args)(bijector)
--> 205 super(MultivariateNormalLinearOperator, self).__init__(
    206     # TODO(b/137665504): Use batch-adding meta-distribution to set the batch
    207     # shape instead of tf.zeros.
    208     # We use `Sample` instead of `Independent` because `Independent`
    209     # requires concatenating `batch_shape` and `event_shape`, which loses
    210     # static `batch_shape` information when `event_shape` is not statically
    211     # known.
    212     distribution=sample.Sample(
    213         normal.Normal(
    214             loc=tf.zeros(batch_shape, dtype=dtype),
    215             scale=tf.ones([], dtype=dtype)),
    216         event_shape,
    217         experimental_use_kahan_sum=experimental_use_kahan_sum),
    218     bijector=bijector,
    219     validate_args=validate_args,
    220     name=name)
    221 self._parameters = parameters

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/decorator.py:232, in decorate.<locals>.fun(*args, **kw)
    230 if not kwsyntax:
    231     args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/distribution.py:342, in _DistributionMeta.__new__.<locals>.wrapped_init(***failed resolving arguments***)
    339 # Note: if we ever want to have things set in `self` before `__init__` is
    340 # called, here is the place to do it.
    341 self_._parameters = None
--> 342 default_init(self_, *args, **kwargs)
    343 # Note: if we ever want to override things set in `self` by subclass
    344 # `__init__`, here is the place to do it.
    345 if self_._parameters is None:
    346   # We prefer subclasses will set `parameters = dict(locals())` because
    347   # this has nearly zero overhead. However, failing to do this, we will
    348   # resolve the input arguments dynamically and only when needed.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/distributions/transformed_distribution.py:244, in _TransformedDistribution.__init__(self, distribution, bijector, kwargs_split_fn, validate_args, parameters, name)
    238 self._zero = tf.constant(0, dtype=tf.int32, name='zero')
    240 # We don't just want to check isinstance(JointDistribution) because
    241 # TransformedDistributions with multipart bijectors are effectively
    242 # joint but don't inherit from JD. The 'duck-type' test is that
    243 # JDs have a structured dtype.
--> 244 dtype = self.bijector.forward_dtype(self.distribution.dtype)
    245 self._is_joint = tf.nest.is_nested(dtype)
    247 super(_TransformedDistribution, self).__init__(
    248     dtype=dtype,
    249     reparameterization_type=self._distribution.reparameterization_type,
   (...)
    252     parameters=parameters,
    253     name=name)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/bijectors/bijector.py:1705, in Bijector.forward_dtype(self, dtype, name, **kwargs)
   1701   input_dtype = nest_util.broadcast_structure(
   1702       self.forward_min_event_ndims, self.dtype)
   1703 else:
   1704   # Make sure inputs are compatible with statically-known dtype.
-> 1705   input_dtype = nest.map_structure_up_to(
   1706       self.forward_min_event_ndims,
   1707       lambda x: dtype_util.convert_to_dtype(x, dtype=self.dtype),
   1708       nest_util.coerce_structure(self.forward_min_event_ndims, dtype),
   1709       check_types=False)
   1711 output_dtype = self._forward_dtype(input_dtype, **kwargs)
   1712 try:
   1713   # kwargs may alter dtypes themselves, but we currently require
   1714   # structure to be statically known.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/python/internal/backend/jax/nest.py:324, in map_structure_up_to(shallow_structure, func, *structures, **kwargs)
    323 def map_structure_up_to(shallow_structure, func, *structures, **kwargs):
--> 324   return map_structure_with_tuple_paths_up_to(
    325       shallow_structure,
    326       lambda _, *args: func(*args),  # Discards path.
    327       *structures,
    328       **kwargs)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/python/internal/backend/jax/nest.py:353, in map_structure_with_tuple_paths_up_to(shallow_structure, func, expand_composites, *structures, **kwargs)
    350 for input_tree in structures:
    351   assert_shallow_structure(
    352       shallow_structure, input_tree, check_types=check_types)
--> 353 return dm_tree.map_structure_with_path_up_to(
    354     shallow_structure, func, *structures, **kwargs)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tree/__init__.py:778, in map_structure_with_path_up_to(***failed resolving arguments***)
    776 results = []
    777 for path_and_values in _multiyield_flat_up_to(shallow_structure, *structures):
--> 778   results.append(func(*path_and_values))
    779 return unflatten_as(shallow_structure, results)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/python/internal/backend/jax/nest.py:326, in map_structure_up_to.<locals>.<lambda>(_, *args)
    323 def map_structure_up_to(shallow_structure, func, *structures, **kwargs):
    324   return map_structure_with_tuple_paths_up_to(
    325       shallow_structure,
--> 326       lambda _, *args: func(*args),  # Discards path.
    327       *structures,
    328       **kwargs)

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/bijectors/bijector.py:1707, in Bijector.forward_dtype.<locals>.<lambda>(x)
   1701   input_dtype = nest_util.broadcast_structure(
   1702       self.forward_min_event_ndims, self.dtype)
   1703 else:
   1704   # Make sure inputs are compatible with statically-known dtype.
   1705   input_dtype = nest.map_structure_up_to(
   1706       self.forward_min_event_ndims,
-> 1707       lambda x: dtype_util.convert_to_dtype(x, dtype=self.dtype),
   1708       nest_util.coerce_structure(self.forward_min_event_ndims, dtype),
   1709       check_types=False)
   1711 output_dtype = self._forward_dtype(input_dtype, **kwargs)
   1712 try:
   1713   # kwargs may alter dtypes themselves, but we currently require
   1714   # structure to be statically known.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/tensorflow_probability/substrates/jax/internal/dtype_util.py:247, in convert_to_dtype(tensor_or_dtype, dtype, dtype_hint)
    245 elif isinstance(tensor_or_dtype, np.ndarray):
    246   dt = base_dtype(dtype or dtype_hint or tensor_or_dtype.dtype)
--> 247 elif np.issctype(tensor_or_dtype):
    248   dt = base_dtype(dtype or dtype_hint or tensor_or_dtype)
    249 else:
    250   # If this is a Python object, call `convert_to_tensor` and grab the dtype.
    251   # Note that this will add ops in graph-mode; we may want to consider
    252   # other ways to handle this case.

File /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/numpy/__init__.py:397, in __getattr__(attr)
    394     raise AttributeError(__former_attrs__[attr])
    396 if attr in __expired_attributes__:
--> 397     raise AttributeError(
    398         f"`np.{attr}` was removed in the NumPy 2.0 release. "
    399         f"{__expired_attributes__[attr]}"
    400     )
    402 if attr == "chararray":
    403     warnings.warn(
    404         "`np.chararray` is deprecated and will be removed from "
    405         "the main namespace in the future. Use an array with a string "
    406         "or bytes dtype instead.", DeprecationWarning, stacklevel=2)

AttributeError: `np.issctype` was removed in the NumPy 2.0 release. Use `issubclass(rep, np.generic)` instead.

Offline inference#

We compute the offline posterior given all the data using Bayes rule for linear regression. This should give the same results as the final step of online inference.

posterior_prec = jnp.linalg.inv(Sigma0) + X.T @ X / obs_var
b = jnp.linalg.inv(Sigma0) @ mu0 + X.T @ y / obs_var
posterior_mean = jnp.linalg.solve(posterior_prec, b)
batch_results = (posterior_mean, posterior_prec)

Plot results#

# Unpack kalman filter results
post_weights_kf, post_sigma_kf = kf_results
w0_kf_hist, w1_kf_hist = post_weights_kf.T
w0_kf_err, w1_kf_err = jnp.sqrt(post_sigma_kf[:, [0, 1], [0, 1]].T)

# Unpack batch results
post_weights_batch, post_prec_batch = batch_results
w0_post_batch, w1_post_batch = post_weights_batch
Sigma_post_batch = jnp.linalg.inv(post_prec_batch)
w0_std_batch, w1_std_batch = jnp.sqrt(Sigma_post_batch[[0, 1], [0, 1]])

fig, ax = plt.subplots()
timesteps = jnp.arange(len(w0_kf_hist))

# Plot online kalman filter posterior.
ax.errorbar(timesteps, w0_kf_hist, w0_kf_err, fmt="-o", label="$w_0$", color="black", fillstyle="none")
ax.errorbar(timesteps, w1_kf_hist, w1_kf_err, fmt="-o", label="$w_1$", color="tab:red")

# Plot batch posterior.
ax.hlines(y=w0_post_batch, xmin=timesteps[0], xmax=timesteps[-1], color="black", label="$w_0$ batch")
ax.hlines(
    y=w1_post_batch, xmin=timesteps[0], xmax=timesteps[-1], color="tab:red", linestyle="--", label="$w_1$ batch"
)
ax.fill_between(timesteps, w0_post_batch - w0_std_batch, w0_post_batch + w0_std_batch, color="black", alpha=0.4)
ax.fill_between(timesteps, w1_post_batch - w1_std_batch, w1_post_batch + w1_std_batch, color="tab:red", alpha=0.4)

ax.set_xlabel("time")
ax.set_ylabel("weights")
ax.legend()
<matplotlib.legend.Legend at 0x7ff4ba3527f0>
../../_images/db54f96b1c55f1a98b577c924ea584a23a41100dc800d8618923b7842fa2c075.png