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2 Solutions

2.1 Conditional independence

2.2 Pairwise independence does not imply mutual independence
We provide two counter examples.

Let X1 and X2 be independent binary random variables, and X3 = X1 ⊕ X2, where ⊕ is the XOR
operator. We have p(X3|X1, X2) 6= p(X3), since X3 can be deterministically calculated from X1 and X2. So
the variables {X1, X2, X3} are not mutually independent. However, we also have p(X3|X1) = p(X3), since
without X2, no information can be provided to X3. So X1 ⊥ X3 and similarly X2 ⊥ X3. Hence {X1, X2, X3}
are pairwise independent.

Here is a different example. Let there be four balls in a bag, numbered 1 to 4. Suppose we draw one at
random. Define 3 events as follows:

• X1: ball 1 or 2 is drawn.

• X2: ball 2 or 3 is drawn.

• X3: ball 1 or 3 is drawn.

We have p(X1) = p(X2) = p(X3) = 0.5. Also, p(X1, X2) = p(X2, X3) = p(X1, X3) = 0.25. Hence
p(X1, X2) = p(X1)p(X2), and similarly for the other pairs. Hence the events are pairwise independent.
However, p(X1, X2, X3) = 0 6= 1/8 = p(X1)p(X2)p(X3).

2.3 Conditional independence iff joint factorizes

2.4 Convolution of two Gaussians is a Gaussian
We follow the derivation of [Jaynes03]. Define

φ(x− µ|σ) = N (x|µ, σ2) =
1

σ
φ(
x− µ
σ

) (1)

where φ(z) is the pdf of the standard normal. We have

p(y) = N (x1|µ1, σ
2
1)⊗N (x2|µ2, σ

2
2) (2)

=

∫
dx1φ(x1 − µ1|σ1)φ(y − (x1 − µ2)|σ2) (3)

Now the product inside the integral can be written as follows

φ(x1 − µ1|σ1)φ(y − (x1 − µ2)|σ2) =
1

2πσ1σ2
exp

{
−1

2

[(
x1 − µ1

σ1

)2

+

(
y − x1 − µ2

σ2

)2
]}

(4)

We can bring out the dependency on x1 by rearranging the quadratic form inside the exponent as follows(
x− µ1

σ1

)2

+

(
y − (x1 − µ2)

σ2

)2

= (w1 + w2)(x1 − x̂) +
w1w2

w1 + w2
(y − (µ1 − µ2))2 (5)

where we have defined the precision or weighting terms w1 = 1/σ2
1 , w2 = 1/σ2

2 , and the term

x̂ =
w1µ1 + w2y − w2µ2

w1 + w2
(6)

Note that
w1w2

w1 + w2
=

1

σ2
1σ

2
2

σ2
1σ

2
2

σ2
1 + σ2

2

=
1

σ2
1 + σ2

2

(7)
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Hence

p(y) =
1

2πσ1σ2

∫
exp

[
−1

2
(w1 + w2)(x1 − x̂)2 − 1

2

w1w2

w1 + w2
(y − (µ1 − µ2))2

]
dx1 (8)

The integral over x1 becomes one over the normalization constant for the Gaussian:∫
exp[−1

2
(w1 + w2)(x1 − x̂)2] dx1 = (2π)

1
2

(
σ2
2σ

2
2

σ2
1 + σ2

2

) 1
2

(9)

Hence

p(y) = (2π)−1(σ2
1σ

2
2)−

1
2 (2π)

1
2

(
σ2
2σ

2
2

σ2
1 + σ2

2

) 1
2

exp[− 1

2(σ2
1 + σ2

2)
(y − µ1 − µ2)2] (10)

= (2π)−
1
2

(
σ2
1 + σ2

2

)− 1
2 exp[− 1

2(σ2
1 + σ2

2)
(y − µ1 − µ2)2] (11)

= N (y|µ1 + µ2, σ
2
1 + σ2

2) (12)

2.5 Expected value of the minimum of two rv’s

2.6 Variance of a sum
We have

V [X + Y ] = E[(X + Y )2]− (E[X] + E[Y ])2 (13)

= E[X2 + Y 2 + 2XY ]− (E[X]2 + E[Y ]2 + 2E[X]E[Y ]) (14)

= E[X2]− E[X]2 + E[Y 2]− E[Y ]2 + 2E[XY ]− 2E[X]E[Y ] (15)
= V [X] + V [Y ] + 2Cov [X,Y ] (16)

If X and Y are independent, then Cov [X,Y ] = 0, so V [X + Y ] = V [X] + V [Y ].

2.7 Deriving the inverse gamma density

2.8 Mean, mode, variance for the beta distribution
For the mode we can use simple calculus, as follows. Let f(x) = Beta(x|a, b). We have

0 =
df

dx
(17)

= (a− 1)xa−2(1− x)b−1 − (b− 1)xa−1(1− x)b−2 (18)
= (a− 1)(1− x)− (b− 1)x (19)

x =
a− 1

a+ b− 2
(20)

For the mean we have

E [θ|D] =

∫ 1

0

θp(θ|D)dθ (21)

=
Γ(a+ b)

Γ(a)Γ(b)

∫
θ(a+1)−1(1− θ)b−1dθ (22)

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ 1 + b)
=

a

a+ b
(23)
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where we used the definition of the Gamma function and the fact that Γ(x+ 1) = xΓ(x).
We can find the variance in the same way, by first showing that

E
[
θ2
]

=
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

Γ(a+ 2 + b)

Γ(a+ 2)Γ(b)
θ(a+2)−1(1− θ)b−1dθ (24)

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 2 + b)

Γ(a+ 2)Γ(b)
=

a

a+ b

a+ 1

a+ 1 + b
(25)

Now we use V [θ] = E
[
θ2
]
− E [θ]

2 and E [θ] = a/(a+ b) to get the variance.

2.9 Bayes rule for medical diagnosis

2.10 Legal reasoning
Let E be the evidence (the observed blood type), and I be the event that the defendant is innocent, and
G = ¬I be the event that the defendant is guilty.

1. The prosecutor is confusing p(E|I) with p(I|E). We are told that p(E|I) = 0.01 but the relevant
quantity is p(I|E). By Bayes rule, this is

p(I|E) =
p(E|I)p(I)

p(E|I)p(I) + p(E|G)p(G)
=

0.01p(I)

0.01p(I) + (1− p(I))
(26)

since p(E|G) = 1 and p(G) = 1 − p(I). So we cannot determine p(I|E) without knowing the prior
probability p(I). So p(E|I) = p(I|E) only if p(G) = p(I) = 0.5, which is hardly a presumption of
innocence.

To understand this more intuitively, consider the following isomorphic problem (from http://en.
wikipedia.org/wiki/Prosecutor’s_fallacy):

A big bowl is filled with a large but unknown number of balls. Some of the balls are made of
wood, and some of them are made of plastic. Of the wooden balls, 100 are white; out of the
plastic balls, 99 are red and only 1 are white. A ball is pulled out at random, and observed
to be white.

Without knowledge of the relative proportions of wooden and plastic balls, we cannot tell how likely it
is that the ball is wooden. If the number of plastic balls is far larger than the number of wooden balls,
for instance, then a white ball pulled from the bowl at random is far more likely to be a white plastic
ball than a white wooden ball — even though white plastic balls are a minority of the whole set of
plastic balls.

2. The defender is quoting p(G|E) while ignoring p(G). The prior odds are

p(G)

p(I)
=

1

799, 999
(27)

The posterior odds are
p(G|E)

p(I|E)
=

1

7999
(28)

So the evidence has increased the odds of guilt by a factor of 1000. This is clearly relevant, although
perhaps still not enough to find the suspect guilty.
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2.11 Probabilities are sensitive to the form of the question that was used to
generate the answer

2.12 Normalization constant for a 1D Gaussian
Following the first hint we have

Z2 =

∫ 2π

0

∫ ∞
0

r exp

(
− r2

2σ2

)
drdθ (29)

=

[∫ 2π

0

dθ

] [∫ ∞
0

r exp

(
− r2

2σ2

)
dr

]
(30)

= (2π)I (31)

where I is the inner integral

I =

∫ ∞
0

r exp

(
− r2

2σ2

)
(32)

Following the second hint we have

I = −σ2

∫
− r

σ2
e−r

2/2σ2

dr (33)

= −σ2
[
e−r

2/2σ2
]∞
0

(34)

= −σ2[0− 1] = σ2 (35)

Hence

Z2 = 2πσ2 (36)

Z = σ
√

(2π) (37)
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3 Solutions

3.1 Uncorrelated does not imply independent

3.2 Correlation coefficient is between -1 and +1
We have

0 ≤ V
[
X

σX
+

Y

σY

]
(38)

= V
[
X

σX

]
+ V

[
Y

σY

]
+ 2Cov

[
X

σX
,
Y

σY

]
(39)

=
V [X]

σ2
X

+
V [Y ]

σ2
Y

+ 2Cov

[
X

σX
,
Y

σY

]
(40)

= 1 + 1 + 2ρ = 2(1 + ρ) (41)

Hence ρ ≥ −1. Similarly,

0 ≤ V
[
X

σX
− Y

σY

]
= 2(1− ρ) (42)

so ρ ≤ 1.

3.3 Correlation coefficient for linearly related variables is ±1
3.4 Linear combinations of random variables

1. Let y = Ax. Then

Cov [y] = E
[
(y − E [y])(y − E [y])T

]
(43)

= E
[
(Ax−Am)(Ax−Am)T

]
(44)

= AE
[
(x−m)(x−m)T

]
AT (45)

= AΣAT (46)

2. C = AB has entries cij =
∑
k aikbkj . The diagonal elements of C (when i = j) are given by

∑
k aikbki.

So the sum of the diagonal elements is tr(AB) =
∑
ik aikbki which is symmetric in A and B.

3. We have

E
[
xTAx

]
= E

[
tr(xTAx)

]
= E

[
tr(AxxT )

]
(47)

= tr(AE
[
xxT

]
) = tr(A(Σ +mmT )) (48)

= tr(AΣ) +mTAm (49)

3.5 Gaussian vs jointly Gaussian
1. For the mean, we have

E [Y ] = E [WX] = E [X]E [X] = 0 (50)

For the variance, we have

V [Y ] = E [V [Y |W ]] + V [E [Y |W ]] (51)
= E [W [V [X]]W ] + V [WE [X]] (52)

= E
[
W 2
]

+ 0 = 1 (53)

To show it’s Gaussian, we note that Y is a linear combination of Gaussian rv’s.
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2. To show that Cov [X,Y ] = 0, we use the rule of iterated expectation. First we have

E [XY ] = E [E [XY |W ]] (54)

=
∑

w∈{−1,1}

p(w)E [XY |w] (55)

= −1 · 0.5 · E [X · −X] + 1 · 0.5 · E [X ·X] (56)
== 0 (57)

Then we have

E [Y ] = E [E [Y |W ]] (58)

=
∑

w∈{−1,1}

p(w)E [Y |w] (59)

= 0.5 · E [−X] + 0.5 · E [X] (60)
= 0 (61)

Hence
Cov [X,Y ] = E [XY ]− E [X]E [Y ] = 0 (62)

So X and Y are uncorrelated even though they are dependent.

3.6 Normalization constant for a multidimensional Gaussian
Let Σ = UΛUT , so

Σ−1 = U−TΛ−1U−1 = UΛ−1U =

p∑
i=1

1

λi
uiu

T
i (63)

Hence

(x− µ)TΣ−1(x− µ) = (x− µ)T

(
p∑
i=1

1

λi
uiu

T
i

)
(x− µ) (64)

=

p∑
i=1

1

λi
(x− µ)Tuiu

T
i (x− µ) =

p∑
i=1

y2i
λi

(65)

where yi , uTi (x− µ). The y variables define a new coordinate system that is shifted (by µ) and rotated
(by U) with respect to the original x coordinates: y = U(x− µ). Hence x = UTy + µ.

The Jacobian of this transformation, from y to x, is a matrix with elements

Jij =
∂xi
∂yj

= Uji (66)

so J = UT and |J| = 1.
So ∫

exp(−1

2
(x− µ)TΣ−1(x− µ))dx =

∫ ∏
i

exp(−1

2

∑
i

y2i
λi

)dyi|J| (67)

=
∏
i

√
2πλi = |2πΣ| (68)
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3.7 Sensor fusion with known variances in 1d
Define the sufficient statistics as

y1 =
1

n1

n1∑
i=1

y
(1)
i , y2 =

1

n2

n2∑
i=1

y
(2)
i , (69)

Define the prior as
µµ = 0,Σµ =∞ (70)

Define the likelihood as

A =

(
1
1

)
,µy =

(
0
0

)
,Σy =

( v1
n1

0

0 v2
n2

)
(71)

Now we just apply the equations. The posterior precision is a sum of the precisions of each sensor:

Σ−1µ|y = ATΣ−1y A =
(
1 1

)( v1
n1

0

0 v2
n2

)(
1
1

)
=
n1
v1

+
n2
v2

(72)

The posterior mean is a weighted sum of the observed values from each sensor:

µµ|y = Σ−1µ|y

((
1 1

)( v1
n1

0

0 v2
n2

)(
y1
y2

))
= Σ−1µ|y

(
n1y1
v1

+
n2y2
v2

)
(73)

3.8 Show that the Student distribution can be written as a Gaussian scale
mixture

p(w|µ, a, b) =

∫ ∞
0

N (w|µ, α−1)Ga(α|a, b)dα (74)

=

∫ ∞
0

bae−bααa−1

Γ(a)

( α
2π

) 1
2

exp
(
−α

2
(w − µ)2

)
dα (75)

=
ba

Γ(a)

(
1

2π

) 1
2
∫ ∞
0

αa−
1
2 exp

[
−α

(
b+

1

2
(w − µ)2

)]
dα (76)

Let us define ∆ = b + (w − µ)2/2 and z = α∆. Then, using dz = ∆dα, and the definition of the Gamma
function,

∫∞
0
ux−1e−udu = Γ(x), the integral becomes∫ ∞

0

( z
∆

)a+ 1
2−1

e−z∆−1dz = ∆−a−
1
2 Γ(a+

1

2
) (77)

so we have

p(w|µ, a, b) =
Γ(a+ 1/2)

Γ(a)
ba
(

1

2π

) 1
2

∆−a−
1
2 (78)

Let us define a = ν/2 and b = ν/(2λ). Then we have

p(w|µ, a, b) =
Γ((ν + 1)/2)

Γ(ν/2)

( ν
2λ

)ν/2( 1

2π

) 1
2
(
ν

2λ
+

(w − µ)2

2

)−(ν+1)/2

(79)

=
Γ((ν + 1)/2)

Γ(ν/2)

( ν
2λ

)ν/2( 1

2π

) 1
2
(
ν

2λ

[
1 +

λ

ν
(w − µ)2

])−(ν+1)/2

(80)

=
Γ((ν + 1)/2)

Γ(ν/2)

(
λ

νπ

) 1
2
[
1 +

λ

ν
(w − µ)2

]−(ν+1)/2

(81)

= Tν(w|µ, λ−1) (82)
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4 Solutions

4.1 MLE for the univariate Gaussian

4.2 MAP estimation for 1D Gaussians

4.3 Gaussian posterior credible interval
We want an interval that satisfies

p(` ≤ µn ≤ u|D) ≥ 0.95 (83)

where

` = µn + Φ−1(0.025)σn = µn − 1.96σn (84)

u = µn + Φ−1(0.9755)σn = µn + 1.96σn (85)

where Φ is the cumulative distribution function for the standard normal N (0, 1) distribution, and Φ−1(0.025) is
the value below which 2.5% of the probability mass lies (in Matlab, norminv(0.025)=-1.96). and Φ−1(0.975)
is the value below which 97.5% of the probability mass lies (in Matlab, norminv(0.975)=1.96). We want to
find n such that

u− ` = 1 (86)

Hence we solve

2(1.96)σn = 1 (87)

σ2
n =

1

4(1.96)2
(88)

where

σ2
n =

σ2σ2
0

nσ2
0 + σ2

(89)

Hence

nσ2
0 + σ2 = (σ2σ2

0)4(1.96)2 (90)

n =
σ2(σ2

04(1.96)2 − 1)

σ2
0

(91)

=
4(9× (1.96)2 − 1)

9
= 61.0212 (92)

Hence we need at least n ≥ 62 samples.

4.4 BIC for Gaussians

4.5 BIC for a 2d discrete distribution
1. The joint distribution is p(x, y|θ) = p(x|θ1)p(y|x, θ2):

y = 0 y = 1
x = 0 (1− θ1)θ2 (1− θ1)(1− θ2)
x = 1 θ1(1− θ2) θ1θ2

2. The log likelihood is

log p(D|θ) =
∑
i

log p(xi|θ1) +
∑
i

log p(yi|xi, θ2) (93)
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Hence we can optimize each term separately. For θ1, we have

θ̂1 =

∑
i I(xi = 1)

n
=
N(x = 1)

N
=

4

7
= 0.5714 (94)

For θ2, we have

θ̂2 =

∑
i I(xi = yi)

n
=
N(x = y)

N
=

4

7
(95)

The likelihood is

p(D|θ̂,M2) = (
4

7
)N(x=1)(

3

7
)N(x=0)(

4

7
)N(x=y)(

3

7
)N(x 6=y) (96)

= (
4

7
)4(

3

7
)3(

4

7
)4(

3

7
)3 (97)

= (
4

7
)8(

3

7
)6 ≈ 7.04× 10−5 (98)

3. The table of joint counts is
y = 0 y = 1

x = 0 2 1
x = 1 2 2

We can think of this as a multinomial distribution with 4 states. Normalizing the counts gives the MLE:
y = 0 y = 1

x = 0 2/7 1/7
x = 1 2/7 2/7

The likelihood is

p(D|θ̂,M4) = θ
N(x=0,y=0)
00 θ

N(x=0,y=1)
01 θ

N(x=1,y=0)
10 θ

N(x=1,y=1)
11 = (

2

7
)2(

1

7
)1(

2

7
)2(

2

7
)2 (99)

= (
2

7
)6(

1

7
)1 ≈ 7.77× 10−5 (100)

Thus is higher than the previous likelihood, because the model has more parameters.

4. For M4, when we omit case 7, we will have θ̂01 = 0, so p(x7, y7|m4, θ̂) = 0, so L(m4) = −∞. However,
L(m2) will be finite, since all counts remain non zero when we leave out a single case. Hence CV will
prefer M2, since M4 is overfitting.

5. The BIC score is
BIC(m) = log p(D|θ̂,m)− dof(m)

2
log n (101)

where n = 7. For M2, we have dof = 2, so

BIC(m2) = 8 log(
4

7
) + 6 log(

3

7
)− 2

2
log 7 = −11.5066 (102)

For M4, we have dof = 3 because of the sum-to-one constraint, so

BIC(m4) = 6 log(
2

7
) + 1 log(

1

7
)− 3

2
log 7 = −12.3814 (103)

So BIC also prefers m2.
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4.6 A mixture of conjugate priors is conjugate

4.7 ML estimator σ2
mle is biased

Because the variance of any random variable R is given by var(R) = E[R2]−(E[R])2, the expected value of the
square of a Gaussian random variableXi with mean µ and variance σ2 is E[X2

i ] = var(Xi)+(E[Xi])
2 = σ2+µ2.

EX1,...,Xn∼N (µ,σ)[σ
2(X1, . . . , Xn)] = E[

1

n

n∑
i=1

(Xi −
∑n
j=1Xj

n
)2]

=
1

n

∑
i=1

nE[(Xi −
∑n
j=1Xj

n
)2]

=
1

n

∑
i=1

nE[(Xi −
∑n
j=1Xj

n
)(Xi −

∑n
j=1Xj

n
)]

=
1

n

∑
i=1

nE[X2
i −

2

n
Xi

n∑
j=1

Xj +
1

n2

n∑
j=1

n∑
k=1

XjXk]

=
1

n

∑
i=1

nE[X2
i ]− 2

n2

n∑
i=1

n∑
j=1

E[XiXj ] +
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

[XjXk]

Consider the two summations
∑n
i=1

∑n
j=1E[XiXj ] and

∑n
j=1

∑n
k=1[XjXk]. Of the n2 terms in each of

these summations, n of them satisfy i = j or j = k, so these terms are of the form E[X2
i ]. By linearity

of expectation, these terms contribute nE[X2
i ] to the sum. The remaining n2 − n terms are of the form

E[XiXj ] or E[XjXk] for i 6= j or j 6= k. Because the Xi are independent samples, it follows from linearity of
expectation that these terms contribute (n2 − n)E[Xi]E[Xj ] to the summation.

n∑
i=1

n∑
j=1

E[XiXj ] =

n∑
j=1

n∑
k=1

E[XjXk]

= nE[X2
i ] + (n2 − n)E[Xi][Xj ]

= n(σ2 + µ2) + (n2 − n)µµ = nσ2 + nµ2 + n2µ2 − nµ2

= nσ2 + n2µ2

EX1,...,Xn∼N (µ,σ)[σ
2(X1, . . . , Xn)] =

1

n

∑
i

= 1n(σ2 + µ2)− 2

n2
(nσ2 + n2µ2) +

1

n3

n∑
i=1

(nσ2 + n2µ2)

=
1

n
(nσ2 + nµ2)− 2

σ2

n
− 2µ2 +

1

n3
(n2σ2 +N3µ2)

= σ2 + µ2 − 2
σ2

n
− 2µ2 +

σ2

n
+ µ2

= σ2 − σ2

n
=
n− 1

n
σ2

Since the expected value of σ̂2(X1, . . . , Xn) is not equal to the actual variance σ2, σ2 is not an unbiased
estimator. In fact, the maximum likelihood estimator tends to underestimate the variance. This is not
surprising: consider the case of only a single sample: we will never detect any variance. If there are multiple
samples, we will detect variance, but since our estimate for the mean will tend to be shifted from the true
mean in the direction of our samples, we will tend to underestimate the variance.
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4.8 Estimation of σ2 when µ is known

4.9 Variance and MSE of the unbiased estimator for Gaussian variance

14



5 Solutions

5.1 Reject option in classifiers
1. We have to choose between rejecting, with risk λr, and choosing the most probable class, jmax =

arg maxj p(Y = j|x), which has risk

λs
∑

j 6=jmax

p(Y = j|x) = λs(1− p(Y = jmax|x)) (104)

Hence we should pick jmax if

λr ≥ λs(1− p(Y = jmax|x)) (105)
λr
λs
≥ (1− p(Y = jmax|x)) (106)

p(Y = jmax|x) ≥ 1− λr
λs

(107)

otherwise we should reject.

For completeness, we should prove that when we decide to choose a class (and not reject), we always
pick the most probable one. If we choose a non-maximal category k 6= jmax, the risk is

λs
∑
j 6=k

p(Y = j|x) = λs(1− p(Y = k|x)) ≥ λs(1− p(Y = jmax|x)) (108)

which is always bigger than picking jmax.

2. If λr/λs = 0, there is no cost to rejecting, so we always reject. As λr/λs → 1, the cost of rejecting
increases. We find p(Y = jmax|x) ≥ 1− λr

λs
is always satisfied, so we always accept the most probable

class.

5.2 Newsvendor problem

5.3 Bayes factors and ROC curves

5.4 Posterior median is optimal estimate under L1 loss
To prove this, we expand the posterior expected loss as follows:

ρ(a|x) = Eθ|x|θ − a| =
∫
θ≥a

(θ − a)p(θ|x)dθ +

∫
θ≤a

(a− θ)p(θ|x)dθ (109)

=

∫ ∞
a

(θ − a)p(θ|x)dθ +

∫ a

−∞
(a− θ)p(θ|x)dθ (110)

Now recall the rule to differentiate under the integral sign:

d

da

∫ B(a)

A(a)

φ(a, θ)dθ =

∫ B(a)

A(a)

φ′(a, θ)dθ + φ(a,B(a))B′(a) + φ(a,A(a))A′(a) (111)

where φ′(a, θ) = d
daφ(a, θ). Applying this to the first integral in Equation 110, with A(a) = a, B(a) = ∞,

φ(a, θ) = (θ − a)p(θ|x)dy, we have∫ ∞
a

(θ − a)p(θ|x)dθ =

∫ ∞
a

−p(θ|x)dθ + 0 + 0 (112)
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Analogously, one can show ∫ a

−∞
(a− θ)p(θ|x)dθ =

∫ a

−∞
p(θ|x)dθ (113)

Hence

ρ′(a|x) = −
∫ ∞
a

p(θ|x)dθ +

∫ a

−∞
p(θ|x)dθ (114)

= −P (θ ≥ a|x) + P (θ ≤ a|x) = 0 (115)

So the value of a that makes ρ′(a|x) = 0 satisfies

P (θ ≥ a|x) = P (θ ≤ a|x) (116)

Hence the optimal a is the posterior median.
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6 Solutions

6.1 Expressing mutual information in terms of entropies

6.2 Relationship between D(p||q) and χ2 statistic
We have

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
(117)

=
∑
x

(Q(x) + ∆(x)) log

(
1 +

∆(x)

q(x)

)
(118)

=
∑
x

(Q(x) + ∆(x))

(
∆(x)

q(x)
− ∆(x)2

2q(x)
+ · · ·

)
(119)

=
∑
x

∆(x) +
∆(x)2

q(x)
− ∆(x)2

2q(x)
+ · · · (120)

= 0 +
∑
x

∆(x)2

2q(x)
+ · · · (121)

since ∑
x

∆(x) =
∑
x

p(x)− q(x) = 0 (122)

6.3 Fun with entropies

6.4 Forwards vs reverse KL divergence
1. We have

KL (p‖q) =
∑
xy

p(x, y)[log p(x, y)− log q(x)− log q(y)] (123)

=
∑
xy

p(x, y) log p(x, y)−
∑
x

p(x) log q(x)−
∑
y

p(y) log q(y) (124)

We can optimize wrt q(x) and q(y) separately. Imposing a Lagrange multiplier to enforce the constraint
that

∑
x q(x) = 1 we have the Lagrangian

L(q, λ) =
∑
x

p(x) log q(x) + λ(1−
∑
x

q(x)) (125)

Taking derivatives wrt q(x) (thinking of the function as a finite length vector, for simplicity), we have

∂L
∂q(x)

=
p(x)

q(x)
− λ = 0 (126)

q(x) =
p(x)

λ
(127)

Summing both sides over x we get λ = 1 and hence

q(x) = p(x) (128)

Analogously, q(y) = p(y).
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2. We require q(x, y) = 0 whenever p(x, y) = 0, otherwise log q(x, y)/p(x, y) = ∞. Since q(x, y) =
qx(x)qy(y), it must be that qx(x) = qy(y) whenever x = y, and hence qx = qy are the same distribution.
There are only 3 possible distributions that put 0s in the right places and yet sum to 1. The first is:

x
1 2 3 4 q(y)

1 0 0 0 0 0
y 2 0 0 0 0 0

3 0 0 1 0 1
4 0 0 0 0 0
q(x) 0 0 1 0

The second one is
x

1 2 3 4 q(y)
1 0 0 0 0 0

y 2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 1 1
q(x) 0 0 0 1

For both of these, we have KL (q‖p) = 1 × log 1
1/4 = log 4. Furthermore, any slight perturbation of

these probabilities away from the designated values will cause the KL to blow up, meaning these are
local minima.

The final local optimum is
x

1 2 3 4 q(y)
1 1/4 1/4 0 0 1/2

y 2 1/4 1/4 0 0 1/2
3 0 0 0 0 0
4 0 0 0 0 0
q(x) 1/2 1/2 0 0

This has KL (q‖p) = 4(1
4 log 1/4

1/8 ) = log 2, so this is actually the global optimum.

To see that there are no other solutions, one can do a case analysis, and see that any other distribution
will not put 0s in the right places. For example, consider this:

x
1 2 3 4 q(y)

1 1/4 0 1/4 0 1/2
y 2 0 0 0 0 0

3 1/4 0 1/4 0 1/2
4 0 0 0 0 0
q(x) 1/2 0 1/2 0

Obviously if we set q(x, y) = p(x)p(y) = 1/16, we get KL (q‖p) =∞.
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7 Solutions

7.1 Orthogonal matrices
1. Let c = cos(α) and s = sin(α). Using the fact that c2 + s2 = 1, we have

RTR =

 c s 0
−s c 0
0 0 1

c −s 0
s c 0
0 0 1

 =

 c2 + s2 + 0 −cs+ sc+ 0 0
−sc+ sc+ 0 c2 + s2 + 0 0

0 0 1

 =

1 0 0
0 1 0
0 0 1

 (129)

2. The z-axis v = (0, 0, 1) is not affected by a rotation around z. We can easily check that (0, 0, 1) is an
eigenvector with eigenvalue 1 as follows: c s 0

−s c 0
0 0 1

0
0
1

 =

0
0
1

 (130)

Of course, (0, 0,−1) is also a valid solution. We can check this using the symbolic math toolbox in
Matlab:

syms c s x y z
S=solve(’c*x-s*y=x’,’s*x+c*y=y’,’x^2+y^2+z^2=1’)
>> S.x
ans =
0
0

>> S.y
ans =
0
0

>> S.z
ans =

1
-1

If we ignore the unit norm constraint, we find that (0, 0, z) is a solution for any z ∈ R. We can see this
as follows:  c s 0

−s c 0
0 0 1

xy
z

 =

xy
z

 (131)

becomes

cx− sy = x (132)
sx+ cy = y (133)

z = z (134)

Solving gives

y =
x(c− 1)

s
(135)

sx+ cy = sx+
cx(x− 1)

s
(136)

y =
x(c− 1)

s
(137)

and hence x = y = 0. We can check this in Matlab:
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S=solve(’c*x-s*y=x’,’s*x+c*y=y’)
S =

x: [1x1 sym]
y: [1x1 sym]

>> S.x
0
>> S.y
0

7.2 Eigenvectors by hand
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8 Solutions

8.1 Subderivative of the hinge loss function

8.2 EM for the Student distribution
At first blush, it might not be apparent why EM can be used, since there is no missing data. The key idea is
to introduce an “artificial” hidden or auxiliary variable in order to simplify the algorithm. In particular, we
will exploit the fact that a Student distribution can be written as a Gaussian scale mixture [Andrews74;
West87] as follows:

T (xn|µ,Σ, ν) =

∫
N (xn|µ,Σ/zn)Ga(zn|

ν

2
,
ν

2
)dzn (138)

(See Exercise ?? for a proof of this in the 1d case.) This can be thought of as an “infinite” mixture of
Gaussians, each one with a slightly different covariance matrix.

Treating the zn as missing data, we can write the complete data log likelihood as

`c(θ) =

N∑
n=1

[logN (xn|µ,Σ/zn) + log Ga(zn|ν/2, ν/2)] (139)

=

N∑
n=1

[
−D

2
log(2π)− 1

2
log |Σ| − zn

2
δn +

ν

2
log

ν

2
− log Γ(

ν

2
) (140)

+
ν

2
(log zn − zn) + (

D

2
− 1) log zn

]
(141)

where we have defined the Mahalanobis distance to be

δn = (xn − µ)TΣ−1(xn − µ) (142)

We can partition this into two terms, one involving µ and Σ, and the other involving ν. We have, dropping
irrelevant constants,

`c(θ) = LN (µ,Σ) + LG(ν) (143)

LN (µ,Σ) , −1

2
N log |Σ| − 1

2

N∑
n=1

znδn (144)

LG(ν) , −N log Γ(ν/2) +
1

2
Nν log(ν/2) +

1

2
ν

N∑
n=1

(log zn − zn) (145)

Let us first derive the algorithm with ν assumed known, for simplicity. In this case, we can ignore the LG
term, so we only need to figure out how to compute E [zn] wrt the old parameters.

From ?? we have

p(zn|xn,θ) = Ga(zn|
ν +D

2
,
ν + δn

2
) (146)

Now if zn ∼ Ga(a, b), then E [zn] = a/b. Hence the E step at iteration t is

z(t)n , E
[
zn|xn,θ(t)

]
=

ν(t) +D

ν(t) + δ
(t)
n

(147)
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The M step is obtained by maximizing E [LN (µ,Σ)] to yield

µ̂(t+1) =

∑
n z

(t)
n xn∑

n z
(t)
n

(148)

Σ̂(t+1) =
1

N

∑
n

z(t)n (xn − µ̂(t+1))(xn − µ̂(t+1))T (149)

=
1

N

[∑
n

z(t)n xnx
T
n −

(
N∑
n=1

z(t)n

)
µ̂(t+1)(µ̂(t+1))T

]
(150)

These results are quite intuitive: the quantity zn is the precision of measurement n, so if it is small,
the corresponding data point is down-weighted when estimating the mean and covariance. This is how the
Student achieves robustness to outliers.

To compute the MLE for the degrees of freedom, we first need to compute the expectation of LG(ν),
which involves zn and log zn. Now if zn ∼ Ga(a, b), then one can show that

`
(t)

n , E
[
log zn|θ(t)

]
= ψ(a)− log b (151)

where ψ(x) = d
dx log Γ(x) is the digamma function. Hence, from Equation (146), we have

`
(t)

n = Ψ(
ν(t) +D

2
)− log(

ν(t) + δ
(t)
n

2
) (152)

= log(z(t)n ) + Ψ(
ν(t) +D

2
)− log(

ν(t) +D

2
) (153)

Substituting into Equation (145), we have

E [LG(ν)] = −N log Γ(ν/2) +
Nν

2
log(ν/2) +

ν

2

∑
n

(`
(t)

n − z(t)n ) (154)

The gradient of this expression is equal to

d

dν
E [LG(ν)] = −N

2
Ψ(ν/2) +

N

2
log(ν/2) +

N

2
+

1

2

∑
n

(`
(t)

n − z(t)n ) (155)

This has a unique solution in the interval (0,+∞] which can be found using a 1d constrained optimizer.
Performing a gradient-based optimization in the M step, rather than a closed-form update, is an example

of what is known as the generalized EM algorithm.
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Part II

Linear models
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9 Solutions

9.1 Derivation of Fisher’s linear discriminant
We have

f = wTSBw (156)
f ′ = 2SBw (157)

g = wTSWw (158)
g′ = 2SWw (159)

dJ(w)

dw
=

(2sBw)(wTSWw)− (wTSBw)(2SWw)

(wTSWw)T (wTSWw)
= 0 (160)

Hence

(sBw) (wTSWw)︸ ︷︷ ︸
a

= (wTSBw)︸ ︷︷ ︸
b

(SWw) (161)

aSBw = bSWw (162)

SBw =
b

a
SWw (163)
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10 Solutions

10.1 Gradient and Hessian of log-likelihood for multinomial logistic regression
1. Let us drop the i subscript for simplicity. Let S =

∑
k e

ηk be the denominator of the softmax.

∂µk
∂ηj

=

[
∂

∂ηj
eηk
]
S−1 + eηk · [ ∂

∂ηj
S] · −S−2 (164)

= (δije
ηk)S−1 − eηkeηjS−2 (165)

=
eηk

S

(
δij −

eηj

S

)
(166)

= µk(δkj − µj) (167)

2. We have

∇wj
` =

∑
i

∑
k

∂`

∂µik

∂µik
∂ηij

∂ηij
∂wj

=
∑
i

∑
k

yik
µik

µik(δjk − µij)xi (168)

=
∑
i

∑
k

yik(δjk − µij)xi =
∑
i

yijxi −
∑
i

(
∑
k

yik)µijxi (169)

=
∑
i

(yij − µij)xi (170)

3. We consider a single term xi in the log likelihood; we can sum over i at the end. Using the Jacobian
expression from above, we have

∇wc′ (∇wc`)
T = ∇wc′ ((yic − µic)x

T
i ) (171)

= −(∇wc′µic)x
T
i (172)

= −(µic(δc,c′ − µi,c′)xi)xTi (173)

10.2 Regularizing separate terms in 2d logistic regression

10.3 Logistic regression vs LDA/QDA
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11 Solutions

11.1 Multi-output linear regression

11.2 Centering and ridge regression
Suppose X is centered, so x = 0. Then

J(w, w0) = (y −Xw − w01)T (y −Xw − w01) + λwTw (174)

= yTy +wT (XTX)w − 2yT (Xw) + λwTw +
(
−2w01

Ty + 2w01
TXw + w01

T1w0

)
(175)

Consider the terms in brackets:

w01
Ty = w0ny (176)

w01
TXw = w0

∑
i

xTi w = nxTw = 0 (177)

w01
T1w0 = nw2

0 (178)

Optimizing wrt w0 we find

∂

∂w0
J(w, w0) = −2ny + 2nw0 = 0 (179)

ŵ0 = y (180)

Optimizing wrt w we find

∂

∂w
J(w, ŵ0) = [2XTXw − 2XTy] + 2λw = 0 (181)

w = (XTX + λI)−1XTy (182)

11.3 Partial derivative of the RSS

11.4 Reducing elastic net to lasso
We have

J1(w) = yTy + (Xw)T (Xw)− 2yT (Xw) + λ2w
Tw + λ1|w|1 (183)

and
J2(w) = yTy + c2(Xw)T (Xw)− 2c2yT (Xw) + λ2c

2wTw + cλ1|w|1 = J1(cw) (184)

11.5 Shrinkage in linear regression

11.6 EM for mixture of linear regression experts
In the E step, we compute the conditional responsibilities

rnk = p(zn = k|xn,yn) =
p(yn|xn, zn = k)p(zn = k|xn)

p(yn|xn)
(185)

In the M step, we update the parameters of the gating funtion by maximizing the weighted likelihood

`(θg) =
∑
n

∑
k

rnk log p(zn = k|xn,θg) (186)
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and the parameters of the k’th expert by maximizing the weighted likelihood

`(θk) =
∑
n

rnk log p(yn|xn, zn = k,θk) (187)

If the gating function and experts are linear models, these M steps correspond to convex subproblems that
can be solved efficiently.

For example, consider a mixture of linear regression experts using logistic regression gating functions. In
the M step, we need to maximize Q(θ,θold) wrt wk, σ2

k and V. For the regression parameters for model k,
the objective has the form

Q(θk,θ
old) =

N∑
n=1

rnk

{
− 1

σ2
k

(yn −wT
kxn)

}
(188)

We recognize this as a weighted least squares problem, which makes intuitive sense: if rnk is small, then data
point n will be downweighted when estimating model k’s parameters. From ?? we can immediately write
down the MLE as

wk = (XTRkX)−1XTRky (189)

where Rk = diag(r:,k). The MLE for the variance is given by

σ2
k =

∑N
n=1 rnk(yn −wT

kxn)2∑N
n=1 rnk

(190)

We replace the estimate of the unconditional mixing weights π with the estimate of the gating parameters,
V. The objective has the form

`(V) =
∑
n

∑
k

rnk log πn,k (191)

We recognize this as equivalent to the log-likelihood for multinomial logistic regression in ??, except we
replace the “hard” 1-of-C encoding yi with the “soft” 1-of-K encoding ri. Thus we can estimate V by fitting
a logistic regression model to soft target labels.
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12 Solutions
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Part III

Deep neural networks
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13 Solutions

13.1 Backpropagation for a 1 layer MLP
To compute δ1, let L = CrossEntropyWithLogits(y,a). Then

δ1 =
∂L
∂a

= (p− y)T (192)

where p = S(a).
To compute δ2, we have

δ2 =
∂L
∂z

=
∂L
∂a

∂a

∂h

∂h

∂z
= δ1

∂a

∂h

∂h

∂z
(193)

= δ1U
∂h

∂z
since a = Uh+ b2 (194)

= δ1U ◦ ReLU′(z) since h = ReLU(z) (195)
= δ1U ◦H(h) (196)

Now we compute the gradients wrt the parameters:

∂L
∂U

=
∂L
∂a

∂a

∂U
= δ1h

T (197)

∂L
∂b2

=
∂L
∂a

∂a

∂b2
= δ1 (198)

∂L
∂W

=
∂L
∂z

∂z

∂W
= δ2x

T (199)

∂L
∂b1

=
∂L
∂z

∂z

∂b1
= δ2 (200)

∂L
∂x

=
∂L
∂z

∂z

∂x
= δ2W (201)
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14 Solutions
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15 Solutions
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Part IV

Nonparametric models
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16 Solutions
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17 Solutions

17.1 Fitting an SVM classifier by hand
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18 Solutions
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Part V

Beyond supervised learning
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19 Solutions

19.1 Information gain equations
To see this, let us define pn , p(θ|D) as the current belief state, and pn+1 , p(θ|D,x, y) as the belief state
after observing (x, y). Then

KL (pn+1‖pn) =

∫
pn+1 log

pn+1

pn
dθ (202)

=

∫
pn+1 log pn+1dθ −

∫
pn+1 log pndθ (203)

= −H pn+1 −
∫
pn+1 log pndθ (204)

Next we need to take expectations wrt p(y|x,D). We will use the following identity:∑
y

p(y|x,D)

∫
pn+1 log pndθ (205)

=
∑
y

p(y|x,D)

∫
p(θ|D,x, y) log p(θ|D)dθ (206)

=

∫ ∑
y

p(y,θ|x,D) log p(θ|D)dθ (207)

=

∫
p(θ|D) log p(θ|D)dθ (208)

Using this, we have

U ′(x) = Ep(y|x,D) [−H pn+1]−
∫
pn log pndθ (209)

= Ep(y|x,D) [−H p(θ|x, y,D) + H p(θ|D)] = U(x) (210)
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20 Solutions

20.1 EM for FA
In the E step, we can compute the posterior for zn as follows:

p(zn|xn,θ) = N (zn|mn,Σn) (211)

Σn , (I + WTΨ−1W)−1 (212)

mn , Σn(WTΨ−1(xn − µ)) (213)

We now discuss the M step. We initially assume µ = 0. Using the trace trick we have∑
i

E
[
(x̃i −Wzi)

TΨ−1(x̃i −Wzi)
]

=
∑
i

[
x̃Ti Ψ−1x̃i + E

[
zTi WTΨ−1Wzi

]
− 2x̃Ti Ψ−1WE [zi]

]
(214)

=
∑
i

[
tr(Ψ−1x̃ix̃

T
i ) + tr(Ψ−1WE

[
ziz

T
i

]
WT ) (215)

−tr(2Ψ−1WE [zi] x̃
T
i )
]

(216)

, tr(Ψ−1G(W)) (217)

Hence the expected complete data log likelihood is given by

Q =
N

2
log |Ψ−1| − 1

2
tr(Ψ−1G(W)) (218)

Using the chain rule and the facts that ∂
∂W tr(WTA) = A ∂

∂WWTAW = (A + AT )W we have

∇WQ(W) = −1

2
Ψ−1∇WG(W) = 0 (219)

∇WG(W) = 2W
∑
i

E
[
ziz

T
i

]
− 2(

∑
i

E [zi] x̃
T
i )T (220)

Wmle =

[∑
i

x̃iE [zi]
T

][∑
i

E
[
ziz

T
i

]]−1
(221)

Using the facts that ∇X log |X| = X−T and ∇Xtr(XA) = AT we have

∇Ψ−1Q =
N

2
Ψ− 1

2
G(Wmle) = 0 (222)

Ψ =
1

N
diag(G(Wmle)) (223)

We can simplify this as follows, by plugging in the MLE (this simplification no longer holds if we use MAP
estimation). First note that ∑

i

E
[
ziz

T
i

]
WT

mle =
∑
i

E [zi] x̃
T
i (224)

so

Ψ =
1

N

∑
i

(
x̃ix̃

T
i + WmleE [zi] x̃

T
i − 2WmleE [zi] x̃

T
i

)
(225)

=
1

N

(∑
i

x̃ix̃
T
i −Wmle

∑
i

E [zi] x̃
T
i

)
(226)
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To estimate µ and W at the same time, we can define W̃ = (W,µ) and z̃ = (z, 1), Also, define

bn , E [z̃|xn] = [mn; 1] (227)

Ωn , E
[
z̃z̃T|xn

]
=

(
E
[
zzT|xn

]
E [z|xn]

E [z|xn]
T

1

)
(228)

Then the M step is as follows:

ˆ̃W =

[∑
n

xnb
T
n

][∑
n

Ωn

]−1
(229)

Ψ̂ =
1

N
diag

{∑
n

(
xn − ˆ̃Wbn

)
xTn

}
(230)

It is interesting to apply the above equations to the PPCA case in the limit where σ2 → 0. This provides
an alternative way to fit PCA models, as shown by [Roweis97]. Let Z̃ be a L × N matrix storing the
posterior means (low-dimensional representations) along its columns. Similarly, let X̃ = XT be an D ×N
matrix storing the original data along its columns. From ??, when σ2 = 0, we have

Z̃ = (WTW)−1WTX̃ (231)

This constitutes the E step. Notice that this is just an orthogonal projection of the data.
From Equation (229), the M step is given by

Ŵ =

[∑
n

xnE [zn]
T

][∑
n

E [zn]E [zn]
T

]−1
(232)

where we exploited the fact that Σ = Cov [zn|xn,θ] = 0I when σ2 = 0. It is worth comparing this expression
to the MLE for multi-output linear regression (??), which has the form W = (

∑
n ynx

T
n)(
∑
n xnx

T
n)−1. Thus

we see that the M step is like linear regression where we replace the observed inputs by the expected values
of the latent variables.

In summary, here is the entire algorithm:

• E step: Z̃ = (WTW)−1WTX̃

• M step: W = X̃Z̃
T

(Z̃Z̃
T

)−1

[Tipping99b] showed that the only stable fixed point of the EM algorithm is the globally optimal solution.
That is, the EM algorithm converges to a solution where W spans the same linear subspace as that defined
by the first L eigenvectors. However, if we want W to be orthogonal, and to contain the eigenvectors in
descending order of eigenvalue, we have to orthogonalize the resulting matrix (which can be done quite
cheaply). Alternatively, we can modify EM to give the principal basis directly [Ahn03].

20.2 EM for mixFA

20.3 Deriving the second principal component
1. Dropping terms that no not involve z2 we have

J =
1

n

n∑
i=1

[
−2zi2v

T
2 (xi − zi1v1) + z2i2v

T
2 v2

]
=

1

n

n∑
i=1

[
−2zi2v

T
2 xi + z2i2

]
(233)

40



since vT2 v2 = 1 and vT1 v2 = 0. Hence

∂J

∂zi2
= −2vT2 xi + 2zi2 = 0 (234)

so
zi2 = vT2 xi (235)

2. We have
∂J̃

∂v2
= −2Cv2 + 2λ2v2 + λ12v1 = 0 (236)

Premultiplying by vT1 yields

0 = −2vT1 Cv2 + 2λ2v
T
1 v2 + λ12v

T
1 v1 (237)

Now vT1 Cv2 = vT1 (λ1v2) = 0, and vT1 v2 = 0, and vT1 v1 = 1, so λ12 = 0. Hence

0 = −2Cv2 + 2λ2v2 (238)
Cv2 = λ2v2 (239)

So v2 is an eigenvector of C. Since we want to maximize the variance, we want to pick the eigenvector
with the largest eigenvalue, but the first one is already taken. Hence v2 is the evector with the second
largest evalue.

20.4 Deriving the residual error for PCA

20.5 PCA via successive deflation
1. We have

C̃ =
1

n

[
(I− v1vT1 )XTX(I− v1vT1 )

]
(240)

=
1

n

[
(XTX− v1vT1 XTX)(I− v1vT1 )

]
(241)

=
1

n

[
XTX− v1(vT1 XTX)− (XTXv1)vT1 + v1(vT1 XTXv1)vT1

]
(242)

=
1

n

[
XTX− v1(nλ1v

T
1 )− (nλ1v1)vT1 + v1(vT1 nλ1v1)vT1

]
(243)

=
1

n

[
XTX− nλ1v1vT1 − nλ1v1vT1 + nλ1v1v

T
1

]
(244)

=
1

n
XTX− λ1v1vT1 (245)

2. Since X̃ lives in the d− 1 subspace orthogonal to v1, the vector u must be orthogonal to v1. Hence
uTv1 = 0 and uTu = 1, so u = v2.

3. We have

function [V, lambda] = simplePCA(C, K, f)
d = length(C);
V = zeros(d,K);
for j=1:K

[lambda(j), V(:,j) = f(C);
C = C - lambda(j)*V(:,j)*V(:,j)’; % deflation

end
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20.6 PPCA variance terms
Define A = (ΛK − σ2I)

1
2 .

1. We have

vTCv = vT (UARRTATUT + σ2I)v = vTσ2Iv = σ2 (246)

2. We have

vTCv = uTi (UARRTATUT + σ2I)ui (247)

= uTi U(Λ− σ2I)UTui + σ2 (248)

= eTi (Λ− σ2I)ei + σ2 = λi − σ2 + σ2 (249)

20.7 Posterior inference in PPCA

20.8 Imputation in a FA model

20.9 Efficiently evaluating the PPCA density
Since C is not full rank, we can use matrix inversion lemma to invert it efficiently:

C−1 =
1

σ2

[
I−W

(
WTW + σ2I

)
WT

]
(250)

Plugging in the MLE we find

W = UK(ΛK − σ2I)
1
2 (251)

C−1 =
1

σ2

[
I−UK(ΛK − σ2I)Λ−1K UT

K

]
(252)

=
1

σ2

[
I−UKJUT

K

]
(253)

J = diag(1− σ2/λj) (254)

Similarly it can be shown that

log |WWT + σ2I| = (d−K) log σ2 +

K∑
i=1

log λi (255)
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