
Preface

In 2012, I published a 1200-page book called Machine Learning: A Probabilistic Perspective, which
provided a fairly comprehensive coverage of the field of machine learning (ML) at that time, under
the unifying lens of probabilistic modeling. The book was well received, and won the De Groot prize
in 2013.

The year 2012 is also generally considered the start of the “deep learning revolution”. The term
“deep learning” refers to a branch of ML that is based on neural networks with many layers (hence
the term “deep”). Although this basic technology had been around for many years, it was in 2012
when [KSH12] used deep neural networks (DNNs) to win the ImageNet image classification challenge
by such a large margin that it caught the attention of the wider community. Related advances on
other hard problems, such as speech recognition, appeared around the same time (see e.g., [Cir+10;
Cir+11; Hin+12]). These breakthroughs were enabled by advances in hardware technology (in
particular, the repurposing of fast graphics processing units (GPUs) from video games to ML), data
collection technology (in particular, the use of crowd sourcing tools, such as Amazon’s Mechanical
Turk platform, to collect large labeled datasets, such as ImageNet), as well as various new algorithmic
ideas. some of which we cover in this book.

Since 2012, the field of deep learning has exploded, with new advances coming at an increasing
pace. Interest in the field has also exploded, fueled by the commercial success of the technology,
and the breadth of applications to which it can be applied. Therefore, in 2018, I decided to write a
second edition of my book, to attempt to summarize some of this progress.

By March 2020, my draft of the second edition had swollen to about 1600 pages, and I still had
many topics left to cover. As a result, MIT Press told me I would need to split the book into two
volumes. Then the COVID-19 pandemic struck. I decided to pivot away from book writing, and to
help develop the risk score algorithm for Google’s exposure notification app [MKS21] as well as to
assist with various forecasting projects [Wah+21]. However, by the Fall of 2020, I decided to return
to working on the book.

To make up for lost time, I asked several colleagues to help me finish by writing various sections (see
acknowledgements below). The result of all this is two new books, “Probabilistic Machine Learning:
An Introduction”, which you are currently reading, and “Probabilistic Machine Learning: Advanced
Topics”, which is the sequel to this book [Mur22]. Together these two books attempt to present a
fairly broad coverage of the field of ML c. 2021, using the same unifying lens of probabilistic modeling
and Bayesian decision theory that I used in the 2012 book.

Nearly all of the content from the 2012 book has been retained, but it is now split fairly evenly

https://bayesian.org/project/degroot-prize/
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between the two new books. In addition, each new book has lots of fresh material, covering topics from
deep learning, as well as advances in other parts of the field, such as generative models, variational
inference and reinforcement learning.

To make this introductory book more self-contained and useful for students, I have added some
background material, on topics such as optimization and linear algebra, that was omitted from the
2012 book due to lack of space. Advanced material, that can be skipped during an introductory
level course, is denoted by an asterisk * in the section or chapter title. Exercises can be found at
the end of some chapters. Solutions to exercises marked with an asterisk * are available to qualified
instructors by contacting MIT Press; solutions to all other exercises can be found online. See the
book web site at probml.ai for additional teaching material (e.g., figures and slides).

Another major change is that all of the software now uses Python instead of Matlab. (In the
future, we may create a Julia version of the code.) The new code leverages standard Python libraries,
such as NumPy, Scikit-learn, JAX, PyTorch, TensorFlow, PyMC3, etc. Details on how to use the
code can be found at probml.ai.
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About the cover

The cover illustrates a neural network (Chapter 13) being used to classify a hand-written digit x into
one of 10 class labels y 2 {0, 1, . . . , 9}. The histogram on the right is the output of the model, and
corresponds to the conditional probability distribution p(y|x).

Kevin Patrick Murphy
Palo Alto, California
August 2021.
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